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[1] We show that the flux of mass crossing in one
direction (the ‘‘gross’’ flux) through any specified surface
S that divides anadvective-diffusive flow in a closed
domain is infinite. That is, the flux, F (t), through S of
the fluid mass that spent at least time t on one side of S
diverges like t�1/2 as t ! 0, in the continuum limit. The
gross flux is completely dominated by fluid elements
residing infinitesimally short times on one side of S before
re-crossing to the other side. This general result puts into
context the widely varying estimates of gross mass flux
across the midlatitude tropopause. Such estimates are
dominated by the smallest resolved scales, leading us to
conclude that gross mass flux is not a useful diagnostic of
stratosphere-troposphere exchange. The function F (t),
however, provides important information on transport
across the tropopause. INDEX TERMS: 0341 Atmospheric

Composition and Structure: Middle atmosphere—constituent

transport and chemistry (3334); 0368 Atmospheric Composition

and Structure: Troposphere—constituent transport and chemistry;

3299 Mathematical Geophysics: General or miscellaneous; 3362

Meteorology and Atmospheric Dynamics: Stratosphere/

troposphere interactions; 3399 Meteorology and Atmospheric

Dynamics: General or miscellaneous. Citation: Hall, T. M., and

M. Holzer, Advective-diffusive mass flux and implications for

stratosphere-troposphere exchange, Geophys. Res. Lett., 30(5),

1222, doi:10.1029/2002GL016419, 2003.

1. Introduction

[2] Diffusion combined with advection is an appropriate
description for a wide variety of fluid flows in the earth
sciences [e.g.,Waugh and Hall, 2002]. A common approach
to characterizing transport in such systems is the estimation
of fluid and trace constituent mass fluxes. For example,
several recent studies (see below) have attempted to esti-
mate the mass flux in one direction, the ‘‘gross’’ flux, across
the extratropical tropopause. We deduce from general con-
siderations, however, that the advective-diffusive gross flux
of fluid mass across an arbitrary surface is infinite and,
therefore, not a useful transport diagnostic. In practice
estimates of gross flux are dominated by the smallest
resolved scales of motion. We propose instead the estima-
tion of the flux F (t) of fluid that resides for at least time t
on one side of the surface before re-crossing. The infinite

gross flux emerges as a singularity at t = 0 while the
behaviour of F (t) for finite t allows for novel physical
interpretation of the transport processes across the surface.
We discuss the application to stratosphere-troposphere
exchange (STE), a subject of intense current interest. More
generally, our results are relevant to any advective-diffusive
system in which the rate of fluid exchange between reser-
voirs is of interest.
[3] Considerable effort has gone into quantifying mid-

latitude STE [e.g., Holton et al., 1995; Appenzeller et al.,
1996]. A number of studies conclude that the net flux is the
difference of larger opposing gross fluxes [e.g., Siegmund et
al., 1996; Wirth and Egger, 1999; Dethof et al., 2000; Seo
and Bowman, 2001; Wernli and Bourqui, 2002]. Efforts to
estimate the gross fluxes are motivated in part by the fact
that the net flux of air mass is an incomplete diagnostic of
tracer transport [Gettelman and Sobel, 2000]. Even if the net
air mass flux is zero, opposing gross fluxes will cause tracer
transport across the tropopause if the tracer has local
gradients, for example due to chemical sources and sinks.
However, estimates of the gross air mass flux vary widely.
Gettelman and Sobel [2000] note a factor of four variation
among various estimates of the ratio of downward to
upward gross flux across the extratropical tropopause.
Several of these estimates are based on the method of Wei
[1987], who developed an expression for the advective flux
through an arbitrary evolving surface. Gettelman and Sobel
[2000] conclude that the estimation of gross fluxes using the
Wei [1987] method is highly sensitive to inaccuracies in the
underlying data from meteorological assimilation systems
or general circulation models (GCMs). They show that
space and time averaging can reduce the sensitivity, but
such a procedure may suppress real transport events,
because there is no clear choice of scale over which to
apply the averaging.
[4] A different approach to calculate gross fluxes from

meteorological data is to compute Lagrangian trajectories of
particles, and to count the number of particles crossing a
predefined tropopause. Wernli and Bourqui [2002] take this
approach and find that the computed flux is highly sensitive
to a ‘‘residence-time’’ threshold they use to include or
exclude tropopause-crossing events. Particles spend a range
of times (‘‘residence times’’ in the nomenclature of Wernli
and Bourqui [2002]) on one side of the tropopause before
crossing back to the other side. If progressively shorter
residence times are allowed in the calculation, the gross flux
increases. No convergence with decreasing threshold is
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apparent in their analysis. Sugata [2000], applying a particle
diagnostic to global tropospheric transport, also shows no
convergence of gross flux with decreasing residence-time
threshold. Sobel et al. [1997] apply a similar technique to
transport across the stratospheric polar vortex and discuss
the sensitivity to thresholds in detail.
[5] In the trajectory and Wei [1987] methods transport is

treated as purely advective. Either one counts particle
trajectories crossing the tropopause or sums velocity com-
ponents normal to the tropopause, both of which vary in
space and time at all scales, including the smallest that are
resolved. We take an alternative approach based on the fact
that cross-tropopause transport is fundamentally advective-
diffusive. Although global assimilated meteorological data
sets do not resolve the irreversible mixing of small-scale,
three-dimensional turbulence, the smallest-scale resolved
features of such data (order 1�) are still pseudo-random in
character (e.g., tropopause folds, thin stratospheric fila-
ments, cutoff cyclones). In addition, assimilated data sets
contain noise from a variety of sources that leads to pseudo-
random jitter in tropopause height [e.g., Gettelman and
Sobel, 2000]. The diffusive effect of small-scale, pseudo-
random processes on particle trajectories is well docu-
mented [e.g., Bowman, 1995]: While an individual particle
experiences only advection, a cluster of particles disperses
as particle trajectories diverge. A statistical description of
the transport in terms of diffusion, Fickian or otherwise,
becomes necessary.
[6] The high sensitivity of cross-tropopause gross-flux

estimates to details of the particular analysis and underlying
meteorological data is consistent with a natural feature of
advective-diffusive flows that we derive here: the gross flux
of fluid mass across any surface S separating an advective-
diffusive fluid flow is infinite. In the continuum limit, the
gross flux is completely dominated by fluid elements that
cross S and reside infinitesimally short times on one side of
S before re-crossing in the other direction. Relatedly, a
commonly defined bulk timescale, the steady-state mass
divided by the gross flux, is zero. (We use the term ‘‘turn-
over time’’ rather than ‘‘residence time’’ for this timescale to
avoid confusion with the residence time of individual fluid
elements.) Our result generalizes a similar observation made
in the context of the stratospheric polar vortex by Sobel et
al. [1997]. We conclude that gross flux and turnover time
are not useful diagnostics of STE, and efforts to estimate
them in hopes of better understanding the system are futile.
Estimates of these quantities are dominated by the smallest
resolved scales of motion and provide no information about
passage of air across the tropopause of extended duration.

2. General Development

[7] We will show under general conditions that the gross
flux through any surface dividing an advective-diffusive
flow in a finite domain is infinite in the continuum limit.
First, however, it is instructive to examine an extremely
simple model that highlights the essential physics of our
analysis. Because diffusion is the continuum limit of
random particle motion, consider a one-dimensional lattice
with spacing dx and an average particle number n per unit
distance. Particles randomly move up or down by dx with
equal probability 1/2 every timestep dt, and the entire

lattice is translated, or ‘‘advected’’, upward with velocity
u. The gross flux into x = 0 from x = �dx is on average
Fup = ndx/(2dt) + nu. In terms of the corresponding
macroscopic diffusivity, k = (dx)2/(2dt), this gross flux

becomes Fup ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k= 2dtð Þ

p
þ nu; or equivalently, Fup =

nk/dx + nu. Taking the continuum limit (dx, dt ! 0) such
that n and k remain constant, we see that Fup diverges like
dt�1/2, or equivalently, like dx�1. Thus, at any finite
resolution, Fup is dominated by motion at the shortest
space and timescales. Meanwhile, the same argument
applies to the downward flux Fdn = ndx/(2dt), which for
this simple model is purely diffusive, so that the net flux
Fup � Fdn = nu remains finite. We note that there is a close
connection with the subject of first-passage times [Mont-
roll and West, 1979], where similar singularities appear.
[8] We now consider advective-diffusive fluid flow in

generality for a domain R of finite mass. R is separated by a
surface S into two sub-domains R1 and R2. The surface S is
purely a conceptual construction; it has no effect on the
fluid transport, and it need not have any relationship to the
flow. The fluid is imagined to consist of infinitesimal
elements that maintain their identity against mixing for all
timescales of interest. Diffusion is manifest as random
motions of the fluid elements. Only properties averaged
over the large number of fluid elements in a ‘‘parcel’’ can be
measured.
[9] To compute the flux of fluid mass across S we make

use of a hypothetical tracer with idealized sources and
boundary conditions, namely, the Green’s function, G. The
analysis exploits the techniques of Holzer and Hall
[2000]. The Green’s function G(r, tjr0, t0) is the response
at position r and time t to a unit mass source of tracer, r-1

d(t � t0)d(r � r0), where r is the fluid density, and r0 is in
R2. Tracer ‘‘marks’’ fluid elements as having been at r0 at
t0. The quantity G(r, tjr0, t0) r(r) d3r is the mass fraction of
the tracer-marked fluid elements contained in the fluid
parcel of mass r(r) d3r at r and t. The marked fraction in
all R2 at elapsed time (‘‘residence time’’) t = t � t0 is

P t0 þ tjr0; t0ð Þ ¼
Z
R2

d3rr rð ÞG r; t0 þ tjr0; t0ð Þ: ð1Þ

The evolution of P(t0 + tjr0, t0) depends on the tracer
boundary conditions (BCs) on S. Consider a BC of zero
mixing ratio, that is, G(S, t0 + tjr0, t0) = 0. On the other
boundaries of R2, G complies with the natural no-flux
conditions of the fluid. With these BCs, tracer marking a
fluid element indicates that the fluid element has not made
contact with S since being at r0. When a fluid element makes
S contact its tracer marking is removed by the BC. Therefore,
P(t0 + tjr0, t0) declines from unity in elapsed time, as tracer-
marked fluid elements make contact with S. P(t0 + tjr0, t0) is
the fraction of fluid mass that has not made S contact by t0 +
t, given that it was at r0 at t0. Now, d3r0r(r0) P(t0 + tjr0, t0)/M2

is the fraction of fluid mass in R2 that was in d
3r0 about r0 at t0

and has not made S contact by t0 + t, where M2 is the total
fluid mass in R2. Thus, the fraction of fluid mass anywhere in
R2 at t

0 that resides at least time t before exiting, P (t0 + tjt0),
is obtained by integrating over R2:

P t0 þ tjt0ð Þ ¼ 1

M2

Z
R2

d3r0r r0ð ÞP t0 þ tjr0; t0ð Þ: ð2Þ
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Finally, the flux F (t0 + tjt0) out of R2 of the mass fraction of
fluid that has resided in R2 at least time t is

F t0 þ tjt0ð Þ ¼ � @

@t
P t0 þ tjt0ð Þ: ð3Þ

[10] In order to show that F (t0 + tjt0) is singular at t = 0,
we first rewrite it by using (1), (2), (3) and certain properties
of Green’s functions. In the following, k(r) is the local
diffusivity, and n is the outward normal to S.

F ¼ � 1

M2

Z
R2

d3r0r r0ð Þ @

@t

Z
R2

d3rr rð ÞG r; t0 þ tjr0; t0ð Þ ð4Þ

¼ � 1

M2

Z
R2

d3r0r r0ð Þ
Z
S

d2rr rð Þk rð Þn � rrG r; t0 þ tjr0; t0ð Þ ð5Þ

¼ � 1

M2

Z
R2

d3r0r r0ð Þ
Z
S

d2rr rð Þk rð Þn � rrG
y r0; t0jr; t0 þ tð Þ ð6Þ

� � 1

M2

Z
S

d2rr rð Þk rð Þn � rrP
y t0jr; t0 þ tð Þ: ð7Þ

In (5) the rate of change of tracer-marked mass has been
replaced by the flux through S. Note that the flux is purely
diffusive. Any advective component vG vanishes on S by
construction, because of the BC chosen. In (6) we have used
the reciprocity condition for Green’s functions: G(r, t0 + tjr0,
t0) = Gy(r0, t0jr, t0 + t) [Morse and Feschbach, 1953], where
the dagger indicates the adjoint. The reciprocity condition
states that the response at r to a point source at r0 in the
normal time-forward flow equals the response at r0 to a
point source at r in the time-reversed adjoint flow (TRAF).
Expression (7) defines Py(t0jr, t0 + t), the TRAF analog of
(1). Py(t0jr, t0 + t) is the mass fraction in all R2 at time t0 of
fluid marked by tracer at r at t0 +t in the TRAF.
[11] This final form for F (t0 + tjt0) can now be analyzed

using an argument from Holzer and Hall [2000]. Consider
the behavior of Py(t0jr, t0 + t) at small t. For any r not on S,
limt!0P

y(t0jr, t0 + t) = 1. At early enough elapsed times the
tracer released at r0 is still localized about r0, and thus all
tracer-marked fluid elements remain in R2. For r on S,
however, Py(t0jr, t0 + t) = 0 by the BC. Therefore, as t ! 0
the dependence of P on r0 becomes discontinuous at S, the
normal gradient of P on S becomes infinite, and, thus, from
(7), limt!0 F (t0 + tjt0) = 1. In other words the flux into S
of the mass fraction of fluid elements that have resided for
any time in R2 (the gross flux out of R2) is infinite.
[12] We can further infer that F (t0 + tjt0) diverges like

1=
ffiffiffi
t

p
; that is, as t ! 0,

F t0 þ tjt0ð Þ ! 1ffiffiffi
t

p 1

M2

Z
S

d2r0r r0ð Þ
ffiffiffiffiffiffiffiffiffiffi
k r0ð Þ

p
: ð8Þ

For small t tracer-marked fluid elements must start at r0

within a correspondingly small distance ‘ from S, for
Py(t0jr0, t0 + t) to differ significantly from unity; i.e., for a
significant probability of loss in elapsed time t. This is the

distance over which fluid elements can be diffusively trans-
ported in time t, namely ‘ �

ffiffiffiffiffiffi
kt

p
: Thus, rPy � 1=

ffiffiffiffiffiffi
kt

p
;

and (8) follows from (7).

3. Idealized Illustration

[13] We have shown the gross flux to be infinite for
general advective-diffusive flows. F (t0 + tjt0), however,
depends on the particular flow. It is instructive to examine
an advective-diffusive flow that has an analytic solution for
F ; so that the limiting behavior as t! 0 can be explored. A
highly idealized flow with such a solution is the ‘‘advective-
diffusive loop’’ illustrated in Figure 1. Fluid of constant
density r advects around a loop at constant speed u, and
diffusion occurs along the flow at constant diffusivity k. The
domain is separated by the ‘‘surface’’ S into R1 and R2 with
masses M1 and M2. The model can be imagined to represent
an eddy crossing a fixed tropopause at midlatitudes on an
isentropic surface.
[14] To good approximation a convenient non-dimen-

sionalized form for the gross flux across S is

~F ~tð Þ � e�~t=4ffiffiffiffiffiffiffiffi
p~t3

p
Z Pe

0

~x cosh
~x

2

� �
e�~x

2=4~td~x; ð9Þ

where Pe = uL/k is the Péclet number, ~t ¼ tu2=k; ~x ¼
xu=k; and ~F ¼ FM2= ruð Þ: (To obtain (9) we exploit the
relationship derived by Holzer and Hall [2000] between (5)
and the ‘‘age spectrum’’ of Hall and Plumb [1994], then
apply standard methods to compute the age spectrum.)
As ~t ! 0; the integrand is dominated by small Péclet
number ~x, that is, the small-time limit is dominated by
diffusive transport. For small ~t we can replace the upper
limit of integration with 1 to obtain ~F ~tð Þ ! 2=

ffiffiffiffiffiffi
p~t

p
:

[15] F is plotted in Figure 1 as a function of residence
time, t, for several Pe. The t�1/2 divergence is only
manifest for t < k/u2, when diffusive contact with S
dominates. At large Pe, the timescale, k/u2 = (1/Pe)(L/u),
and the advective timescale, L/u, are well separated, allow-

Figure 1. The gross flux F versus residence time, t, for
the advective-diffusive loop model at three Péclet numbers.
F is in units of r u/M2 and t is in units of L/u. A model
schematic is shown in the inset. Advection is clockwise, and
diffusion occurs along the flow. S divides the domain into
R1 and R2, and the x coordinate runs along the upper half
loop.
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ing F to develop a plateau. The plateau results from fluid
elements penetrating far enough into R2 to get caught up in
the advective circulation around the loop. For t > L/u, F
declines to zero. In the limit of large Pe, F approaches a
box-car shape, but a vanishingly thin divergence at t = 0
remains. Note, however, that at Pe = 100, fluid elements can
reside longer than L/u due to accumulated time spent
moving back and forth diffusively. As Pe is lowered to 10
and 1, the timescales (1/Pe)(L/u) and L/u are no longer well
separated, and no advective plateau develops.

4. Stratosphere-Troposphere Exchange

[16] We have shown on general grounds that ‘‘gross’’
flux, the flux passing in one direction across an arbitrary
surface S dividing an advective-diffusive fluid flow, is
infinite in the continuum limit. That is, the flux F (t0 + tjt0)
of mass that is on one side of S at t0 and resides at least time
t on that side diverges as 1=

ffiffiffi
t

p
for small t. Relatedly, the

‘‘turnover time’’ (steady state mass/gross flux), is zero. This
result has implications for the estimation of air-mass flux in
either direction across the extratropical tropopause. Such
flux can occur isentropically via synoptic and smaller-scale
events [e.g., Holton et al., 1995]. Although in many studies
the flux has been treated as purely advective (e.g., using the
method of Wei [1987] or particle trajectories as in Wernli
and Bourqui [2002]), the mixing due to both resolved and
unresolved motions renders the flow effectively advective-
diffusive. In fact, if the tropopause is defined in a mass-
following coordinate system, then the flux must be purely
diffusive [Nakamura, 1996]. It is perhaps not surprising,
therefore, that gross flux estimates vary widely. Differences
in temporal resolution and time ‘‘thresholds’’ for including
tropopause-crossing events translate to different values of t
at which to evaluate F (t0 + tjt0). The fact that many studies
show high sensitivity of the estimated gross flux to such
thresholds [e.g., Gettelman and Sobel, 2000; Wernli and
Bourqui, 2002] suggests that the studies are evaluating F in
a regime of rapid variation with t, that is, a regime
effectively dominated by diffusion.
[17] The space and time dependencies of the cross-

tropopause transport are linked. The singular flux at infin-
itesimal residence time t corresponds to fluid elements that
have penetrated only infinitesimal distances across the
tropopause. This is consistent with Dethof et al. [2000]
and Seo and Bowman [2001] who find, using different
analyses of meteorological data, that the distribution of
penetration depth of stratosphere-troposphere exchange
peaks sharply at zero.
[18] The singularity at t = 0 implies that gross flux is not

a useful diagnostic of stratosphere-troposphere exchange.
We advocate the estimation from meteorological data of the
full function F (t0 + tjt0), rather than a single value at small
t. F may be well suited for analyzing the effects of
stratosphere-troposphere exchange on the chemical environ-
ment of the upper troposphere and lower stratosphere.
Given a timescale tC for a chemical reaction on one side
of the tropopause, F (t0 + tCjt0) is the fraction of air crossing
the tropopause at t0 that will reside at least tC and, therefore,
undergo significant transformation. Note that F (t0 + tjt0) is
a non-increasing function of t. However, if Pe is suffi-

ciently large then there may be one or more plateaus (as in
Figure 1) that could be revealed by as few as two data points
(F , t), either for a specific calendar time t0 or for an
ensemble average. At small t, given the generic form of
the divergence, it may be possible to infer an effective k
near the tropopause from estimates of F : The calculation of
F should be a relatively straightforward extension of
several studies already performed. For example, when using
particle crossings with residence-time thresholds, t, [e.g.,
Wernli and Bourqui, 2002] the computed flux as a function
of the threshold is, in fact, F (t0 + tjt0).
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